An extended Kalman filtering approach for the estimation of human head tissue conductivities by using EEG data: a simulation study.

نویسندگان

  • G Şengül
  • U Baysal
چکیده

In this study, we propose an extended Kalman filter approach for the estimation of the human head tissue conductivities in vivo by using electroencephalogram (EEG) data. Since the relationship between the surface potentials and conductivity distribution is nonlinear, the proposed algorithm first linearizes the system and applies extended Kalman filtering. By using a three-compartment realistic head model obtained from the magnetic resonance images of a real subject, a known dipole assumption and 32 electrode positions, the performance of the proposed method is tested in simulation studies and it is shown that the proposed algorithm estimates the tissue conductivities with less than 1% error in noiseless measurements and less than 5% error when the signal-to-noise ratio is 40 dB or higher. We conclude that the proposed extended Kalman filter approach successfully estimates the tissue conductivities in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...

متن کامل

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 2012